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COMPLETE GALILEAN-INVARIANT LATTICE BGK MODELS FOR THE

NAVIER-STOKES EQUATION

YUE-HONG QIAN* AND YE ZHOUt

Abstract. Galilean invariance has been an important issue in lattice-based hydrodynamics models.

Previous models concentrated on the nonlinear advection term. In this paper, we take into account the

nonlinear response effect in a systematic way. Using the Chapman-Enskog expansion up to second order,

complete Galilean invariant lattice BGK models in one dimension (0 -- 3) and two dimensions (0 = 1) for

the Navier-Stokes equation have been obtained.
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invariancc

Subject classification. Fluid Mechanics

1. Introduction. The modern version of Lattice Gas Automata (LGA) hydrodynamics model, intro-

duced by Frisch, Hasslachcr and Pomeau [1-2], has attracted much attention since 1986. In particular, the

natural advantage of lattice-based models for performing parallel computation and handling complex ge-

ometries problems, with local operations, indicates the lattice models may provide an alternative efficient

numerical scheme for studying many complex phenomena [3-8].

However, the disadvantages of LGA models are rather significant. Boolean operations are intrinsically

noisy. The pressure also contains an explicit velocity dependence, which is obviously unphysical. Further-

more, LGA could not satisfy Galilean invariant due to the density dependence of a so-called g(p) factor [9].

We stress that Galilean invariance is a basic requirement that is demanded for any physical model.

Steps were taken to overcome the difficulties of LGA. McNamara and Zanetti [10] replaced the Boolean

operations by neglecting particle correlations and introducing averaged distribution functions. Therefore,

the computational accuracy is improved by eliminating the statistical noise. Higuera and Jimenez [11] noted

that there are many choices for the collision integral that could generate the same equilibrium distribution.

In 1992, the Bhatnagar-Gross-Krook approximation for lattice Boltzmann was independently introduced by

Qian et al. [12-13] and Chen et al. [14-15]. The key observations in these two studies are that the requirement

for using Fermi-Dirac statistics is no longer necessary and that of the resulted freedom in the functional form

of the equilibrium distribution provide many choices for using desired equilibrium distribution functions.

The Galilean invariance can be easily achieved for advection terms.

Qian and Orszag [16] found a cubic nonlinear deviation from the Navier-Stoke equations when nonlinear

response was taken into account. The cubic nonlinear term is important in compressible regime when the

Mach number is not small, as usually assumed in the LGA models. Note that the cubic term, as a direct

result of popular equilibrium functions, is hidden in all lattice Boltzmann calculations. Note that Chen et

al. [17] attempted to eliminate the cubic nonlinear deviation term. Their effort was motivated by the fact

*Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027.

? Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681

and IBM Research Division, T.J. Watson Research Center, P.O. Box, 218, Yorktown Heights, NY 10598. This research was

supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the second

author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, VA 23681.



that the cubic terms is not part of original NavieroStokes equation. They used an artificial procedure by

introducing and manipulating higher order tensors of the expanded equilibrium distribution function in a

rather complicated manner.

The purpose of this letter is to point out that current lattice Boltzmann and lattice BGK models have not

achieved a complete Galilean invariance. Indeed, we must emphase here that the cubic nonlinear deviation

term is not Galilean invariant when u -_ u+Uo where Uo is a constant velocity. We will present an expanded

discussion on the Galitean invariance issue in next section and develop a 5-velocity model in one dimension

(0 = 3.0) and a 17-velocity model in two dimensions (0 -- 1.0) to eliminate the cubic nonlinear term. As a

result, these two models achieve a status of complete Gaiilean invariance up to second order derivative since

no higher-order dynamics exists [18]. Along the way, these two models remove another shortcoming of the

lattice Boltzmaml schemes, the staggered spurious invariants, as pointed out by the paper [19].

2. Galilean Invariance and Models Description. The original FHP model [1] has several weak-

nesses. Non-Galilean invariance is one of such problems. Much effort has been made to get the Galilean

invariance in the nonlinear advection term, first by lattice gas models [9], then by lattice BGK models [12-

15]. Qian [12] pointed out that the problem of non-Galilean invariance is directly related to the problem

of velocity-dependent pressure, the two problems became one. When deriving large-scale dynamics, the

models use linear response of small perturbation. If nonlinear response effect is taken into account, a term

deviating from the Navier-Stokes equation is obtained [16]. This new term is non-Galilean invariant and

this fact hasn't been pointed out so far as we know. The consequence of this cubic nonlinear term leads to

a frame-velocity dependent viscosity, which is not physical. We shall recall first the previous models before

introducing a tunable parameter 8 to control the cubic nonlinear term.

Time evolution of lattice BGK models is the following [13],

(2.1) f,(_ + _, t + 1) = fi(x, t) + w[fe(:F, t) - fi(x, t)]

where f, is the particle density with given velocity _ and w the relaxation parameter (0 < w < 2). i is the

index of discrete velocity c_. A workable equilibrium fi* leading to hydrodynamic equations is [12-13],

[ c_u_ u_u_ ](2.2) Z = 1+ c--7-,+ -

where tp is a lattice structure weighting factor (the index p = _) and c_ is a constant. A slightly different

form of equilibrium distribution for the FHP hexagonal lattice was used by Chen et al. [15]. The conditions to

determine the values of tp are the constraints of conservation laws, the isotropic fourth order tensor of velocity

and Galilean invariance in advection term. Greek subscripts a, j5 denote the space directions in Cartesian

coordinates. The conventional summation of repeated Greek subscripts is used. The hydrodynamic density

p and velocity ff are defined as,

i i i i

Using the Chapman-Enskog expansion, we derive the hydrodynamic equations up to the second order of

Knudsen number at long wavelength and long time limits,

(2A) 0,p + 0_(pu_) = 0

(2.5) -oOaO_(_au_)
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wherev and _ are shear and bulk viscosities [13],

)v = (: = --_- -1(2.6)

The equation of state P(p) is,

(2.7)

a is directly related to w by,

(2.8)

P = c2p

1 1
(Tw

w 2

The a cubic nonlinear term is the new term in eq. (2.5) which has been largely ignored in the community

[16], the physical meaning of this term is the nonlinear response due to the quadratic term in the equilibrium

(2.2).

We argue that this term is Mso a source of non-Galilean invariance. With a uniformly moving frame

velocity U0, we have the following variable transformation: t --* t, x --_ x - [Tot, u --_ u + Uo and p _ p. The

momentum in the moving frame is now,

&(pu_,) + ao(pu_,uo) = -a,_P + a#[pvoo(u_,) + p¢&,(ue) ]

(2.9) -aO#&r[p(u + Uo)c,(u + Uo)#(u + Uo)7]

When measuring the shear viscosity, we linearize the above equations by assuming that Uo is in x direction,

(2.10) atv = (v - au3)a O v

where v is the transverse small velocity. Therefore, the effective shear viscosity v, ff is,

(2.11) veIf--_-U2 ( 2-1)2

The velocity-dependence of viscosity is also unphysical. We will verify this relation numerically.

We now use a modified equilibrium distribution for a one-dimensional 5-velocity model (D 1Q5): (0, + 1, + 2)

and a two-dimensional 17-velocity model (D2q17): (0,0), (+1,0), (0,+1), (+1,+1), (+2,0), (0,+2)and
(+2, +2). We add a cubic nonlinear term to the equilibrium distribution with an ajustable parameter 6,

Cicllto_ lto_U B O_olUflUTCi7 ](2.12) f e = ptp 1 + _ + _ (c_ac4, - c825a,) + - _-8 (c4ac4, - 3c25a#)

In order to determine the weighting factors tp, in addition to the previous constraints the isotropie 6*h order

tensor of particle velocity (for two- and three-dimensional cases) must be satisfied. Therefore, the problem

to eliminate the cubic nonlinear term in (2.5) becomes how to determine the weighting factors tp and the

parameter 0 in addition to the usual constraints [12-13].

The final momentum equation for DIQ5 model is,

(2.13) 0t(pu) + 0=(pu 2) = -cg=P + O=[p(v + {)a=u] + X0xa= (pu a)

where X is,

(2.14) X = (oE tpc_ - 9c 6
6c6 1)a
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FIc. 2.1. Effective Shear viscosity v in function of the frame-velocity Uo. The D2Q17 model with 0 = 0.0, 2.0 (non-

Galilean invariant) and with 0 = 1.0 (Galilean invarian 0 and oa = 1.0 are used. Squares are numerical results and solid curves

are predictions.

8 = 3.0 leads to X = 0.0.

For the D2Q17 model,

O,(p_) + O,(p_ue) = -OaR + a_[p_ae(uo) + pCa_(u,)]

(2.15) + xaea.,(p_,ue,,._)

and X is also derived,

(2.16) X = (O- 1)a

We need to replace -a in Eq. (2.10) with X and O = 1.0 leads to X = 0.0. After some algebraic manipulations,

the _ for the D2Q17 model is the solution of the following quadratic equation,

(2.17) 51X 2 + 13X - 12 -- 0

We obtain in the following table the weighting factors of these two models,

TABLE 1

Weighting factors tp, constant c8 and O

Model

D1Q5

D2Q17

l:o

1/2

0.4092905

tl

1/6
0.1123018

t2

0.0335591

t4

1/12

0.0017273

t8

0.0000891

4 e
1 3.0

0.3740845 1.0

Using these parameters, the cubic nonlinear term is exactly cancelled out without introducing any higher

order nonlinearities. Therefore, the final equations arc,

(2.18) a,p + a,(_) = 0

(2.19) p(a,u_ + uuaeu_) = -OaF + ae[pvaa(u_) + pCa_(u_)]
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Fro. 3.1. Comparison of shock tube simulations with (0 = 0.0) or without (0 = 3.0) the cubic nonlinear term in the

momentum equation. The DIQ5 model is used. w = 1.0.

which lead to the complete Galilean invariance regardless of the velocity direction of a uniformly moving

frame.

3. Simulations. Two numerical simulations have been carried out. The first one is to measure the

effective shear viscosity in different moving frames. Figure 1 shows the effective shear viscosity in function

of the uniform velocity U0 with/9 -- 0.0, 1.0 and 2.0. Squares are numerical simulations while solid curves

are predictions based on Eq. (2.10). Only/9 = 1.0 leads to velocity-independent viscosity which achieves the

complete Galilean invariance. The neglection of this term results in relative errors of about 10% for U0 = 0.2.

A shock tube simulation [20] is given in Figure 2 with the following conditions: initially, left half-tube density

is 3.0 while right-half density 1.0, velocity is zero everywhere; at the two ends, bouncing-back conditions are

imposed. The D1Q5 model is used to compare the cubic nonlinear effect with/9 = 0.0 and/9 = 3.0. The

density and velocity differences are obtained at two different time steps t = 100 and t = 200. About 10% of

difference is found due to the non-Galilean invariance. We do believe that non-Galilean invariant effect may

be more significant in convection of passive scalars as discussed in the paper [9].

4. Conclusion. In this letter, we note that the current popular lattice-based hydrodynamics models

are only Galilean invariant in the advection terms. The cubic nonlinear deviation term, which is a direct

result of the chosen equilibrium distribution, does not satisfy the Galilean invariance. This fundamental

property in required for all physical system. We develop a one-dimensional 5-velocity model (/9 -- 3.0) and

a two-dimensional 17-velocity model (/9 = 1.0) that restore the Galilean invariance by eliminating the cubic

term. Therefore, the original Navier-Stokes equation is recovered with complete Galilean invariance. A

three-dimensional model with complete Galilean invariance is under investigation and a lengthy paper of the

details and applications of the present models will be published in the future [21]. An important by-product

of this model is the elimination of the staggered spurious invariants [19]. For cases in which the continuum

limits (long wavelength and long time) break down, effects such as rarefied gas effect [22] and finite lattice

size effect [23] occur.
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